/ ψ =* .=
/* ψ .=
/ / =ψ =* .=
/ / = =* ψ .=
/ / = =ψ =* .=
/ = =* ψ .=
/ / ψ =* .=
/ /* ψ .=
/ / / =ψ =* .=
/ / = =* ψ .=
/ / = =ψ =* .=
/ / = =* ψ .=
O modelo do átomo de Bohr explica bem o comportamento do átomo de hidrogênio e do átomo de hélio ionizado, mas é insuficiente para átomos com mais de um elétron.
Segue abaixo um desenvolvimento do modelo de Bohr que demonstra os níveis de energia no hidrogênio.
Sejam as seguintes convenções:
1. Todas as partículas são como ondas e, assim, o comprimento de onda do elétron, , está relacionado à sua velocidade por
onde h é a constante de Planck e me, a massa do elétron. Bohr não tinha levantado esta hipótese porque só depois é que foi proposto o conceito associado a esta afirmação (veja dualidade onda-partícula). Porém, permite chegar na próxima afirmação.
A interação spin-órbita (mecânica quântica)
Na inclusão introdutória do spin na função de onda de Schrodinger, supõe-se que as coordenadas do spin são independentes das coordenadas do espaço de configuração.[2]
Assim, a função de onda total é escrita como uma função de produto.
(P)
A suposição feita acima implica que não existe interação entre L e S, i.e
Neste caso, é uma auto-função de ambos e e portanto e são bons números quânticos; em outras palavras, as projeções de e são constantes do movimento.
Mas na verdade existe uma interação entre e chamada interação Spin-Órbita expressa em termos da grandeza .
Dado que não comuta quer com ou com , a equação (P) torna-se incorreta e e deixam de ser bons números quânticos.
Nós imaginamos a interação spin-órbita como o momento magnético spin estacionária interagindo com o campo magnético produzido pelo núcleo orbitante.
No sistema de referência de repouso do electrão, há um campo eléctrico
Onde dirige‐se do núcleo em direção ao electrão.
A equação de Rydberg, que era conhecida empiricamente antes da equação de Bohr, está agora na teoria de Bohr para descrever as energias de transições entre um nível de energia orbital e outro. A equação de Bohr dá o valor numérico da já conhecida e medida constante de Rydberg, e agora em termos de uma constante fundamental da natureza, inclui-se a carga do elétron e a constante de Planck.[1] Quando o elétron é movido do seu nível de energia original para um superior e, em seguida, recua um nível retornando à posição original, resulta num fóton a ser emitido. Usando a fórmula derivada para os diferentes níveis de energia de hidrogênio, determinam-se os comprimentos de onda da luz que um átomo de hidrogênio pode emitir. A energia de um fóton emitido por um átomo de hidrogênio é determinado pela diferença de dois níveis de energia de hidrogênio:[1]
onde ni é o nível inicial , e nf é o nível final de energia. Uma vez que a energia de um fóton está
Comentários
Enviar um comentário